/\
©
oraclize

The “state of the art” oracle service.

Designing the safest data-transport-layer you can possibly get.

Thomas Bertani

docs.oraclize.it @OraclizelT



*
Ethereu m\‘

‘-*.- *
Bitcoin See F\

- .
—-—---F
— L

+*
‘,' Oraclize

¢
&

Rootstock ’

&

Eris

docs.oraclize.it @OraclizelT



The way NOT to do it

%@mﬂm

asking datasources to run blockchain adapters

asking datasources to signal blockchain support via dedicated schemas
suggesting dapp developers to run their own oracle

trusting the provider of the oracle service that he is doing a good job
asking the oracle to provide quality (??) data

docs.oraclize.it @OraclizelT



e 180k+ txs sent to the
public Ethereum network
since Sept 2015 (1.5% of all txs ever)

SMART
CONTRACT

e most widely used oracle service
ETHEREUM

e on-demand data =

RESULT
ooz J < + AUTHENTICITY PROOF blockchain is not being spammed!
(TLS Notary/QSEE/SafetyNet/SGX!/...)

1 // Ethereum + Solidity
2 // This code sample & more @ dev.oraclize.it

INTERNET 3

data-source g import "github.com/oraclize/ethereum-api/oraclizeAPI.sol”;
Wolfram 6~ contract PriceFeed is usingOraclize {
Alpha 7 uint public ETHUSD;
Web
API - 9~ function PriceFeed(){
IPFS 10 oraclize setProof(proofType TLSNotary | proofStorage IPFS);

11 update(@); // first check at contract creation
12 }
13
14- function _ callback(bytes32 myid, string result, bytes proof) {
15 if (msg.sender != oraclize cbAddress()) throw;
16 ETHUSD = parselnt{result, 2); // save it as $ cents
17 // do something with ETHUSD
18 //update(60); //recursive update disabled
19 }
20
21- function update(uint delay){
22 oraclize query(delay, "URL",
29 "json(https://min-api.cryptocompare.com/data/price? fsym=ETH&tsyms=USD).USD");

docs.oraclize.it @OraclizelT




docs.oraclize.it

Transaction Information

TxHash:
Block Height:
TimeStamp :
From:

To:

Value:
Gas:

Gas Price:;

Gas Used By Transaction:

Actual Tx CostiFee:
Cumulative Gas Used:
Monce:

Input Data:

Oxaabe1db1367df253bdeb193bbalbiaf8idebe17831989%ebacedcOd4 3237479
21952350 (4839 block confirmations)
19 hrs 12 mins ago (Sep-04-2016 04:18:03 AM +UTC)

0x26388a9301b0428d95e6fcIadi24fcedbec12d31 (Oraclize)

@, Contract 0x4b92a948ced9d457b4655abf62ed930a090f8566 &
.. TRANSFER 1 wei to=* 0x7af8513d30bd6ad67 0ces.
.. TRANSFER 0.001073577540271636 Ether to — Oxa1b5fo5beT 1ia2fbadeic .

0 Ether (30.00)

150000

0.00000002 Ether
92655

0.0018531 Ether ($0.02)
665593

43266

Function: __callback({bytes32 myid, string result, bytes proof)

MethodID: Ox38bbfas0

[0]:2411148f36be501404f4fdfcaaeScbareac 8c6M127074ffaa1e582a50d1295d
[1]:0000000000000000000000000000000000000000000000000000000000000060
[2]:0000000000000000000000000000000000000000000000000000000000000020
[3]:0000000000000000000000000000000000000000000000000000000000000004
[4]:3332373400000000000000000000000000000000000000000000000000000000

@OraclizelT




Authenticity proofs: (mostly) Trusted Computing Techniques to prove.. the authenticity of data!

In the last 2 years.. we have designed ad-hoc security techniques based on:
Qualcomm TEE, Samsung Knox, Google SafetyNet, AWS sandbox, Intel SGX (?), ..

In general, nothing can be said around the quality of data.

Network monitor

3 service | Monitor
RT client-side honesty verifier

Ethereum Node | IPFS Proof verification ?
In sync w/ block #3056775 Downloading file QmiXZQKxSdVgksK.. Verifying proof 116,108,113,110,111,116,9.. e
3671 KBytes " Connected to RPC node,
Infura - Mainnet -ﬂ- M 669 KBytes « Connected to IPFS node.ht'tps:#ipl‘s.infl.lm.io}iﬂ @ 18935 ms « ready

Proofs verification status: checking proofs.

=T RN S ]

11:34  11:49  12:11 12:33  12:56 1319 13:37 1400 1422 1445 15:08  15:33  13:56  16:20 16:43 1704 17227 17:49  18:19 1845 19:09 19:34 19:56

I | |
Mot requested  Proof not verified yet ~ TLSM proof (verified) =~ ANDROID proof (verified) = COMPUTATION proof (verified)

https://github.com/oraclize/proof-verification-tool

docs.oraclize.it @OraclizelT



https://github.com/oraclize/proof-verification-tool
https://github.com/oraclize/proof-verification-tool

HOW STANDARDS PROLIFERATE:
(SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTRNT MESSAGING, ETC)

1?! RIDICULOLS! SOON:
WE NEED To DEVELOP
. | | ONE UNIVERSAL STANDARD ;
SITUATION: || Tiar covere Evervones | | STUATION:
THERE ARE USE CPSES.  vieny THERE ARE

4 COMPETING \ ) |5 COMPETING

Please please please, let’s stop proposing new standards to solve blockchain-specific

problems only - most of them have a broader scope.

The datasources can provide verifiable, native, simple proofs to guarantee the
authenticity of data, and eventually will.

docs.oraclize.it @OraclizelT



https://tools.ietf.org/html/draft-cavage-http-signatures-06

Network Working Group M. Cavage
Internet-Draft Oracle
Intended status: Standards Track M. Sporny
Expires: July 14, 2017 Digital Bazaar

January 1@, 2817

Signing HTTP Messages
draft-cavage-http-signatures-06

Such standard proposal is:
e being discussed since 2013
e elegant, simple and secure solution for native authenticity verification
e supported by different datasources already

e ‘“blockchain” ofc is not being mentioned not even once

docs.oraclize.it @OraclizelT



https://tools.ietf.org/html/draft-cavage-http-signatures-06
https://tools.ietf.org/html/draft-cavage-http-signatures-06

Thanks to the way Oraclize is designed, setting the
proofType to proofType native is enough

12 - function MyConstructor() {

13 oraclize setProof(proofType native);

14 oraclize query("URL", "https://api.whatever.com/..");

15 }

16

17 - function  callback(bytes32 myid, string result, bytes proof) {
18 if (msg.sender !'= oraclize cbAddress()) throw;

19 oraclize verifyNativeProof(proof);

20 Wiita

21 }

What did we just do here?

e native authenticity of data guarantee (the strongest you can possibly get)

e still, no blockchain adapter was needed on the datasource side

e Oraclize works with *any* datasource, providing the strongest proof available
(as for user request)

docs.oraclize.it @OraclizelT



In a nutshell..

fetching authentic data from **any** web API (temperature in London, flights info, random number, ..)

triggering events via web API calls (send email, open a lock, ..)

scheduling transactions for a future time (call that smart contract method in 1 hour)

delegating some code to an offchain auditable context (execute complex ops and give me back the result)

getting access to tons of datasources (IPFS/SWARM, Amazon Mechanical Turk, ..)

docs.oraclize.it @OraclizelT



docs.oraclize.it

No need to install anything (unless you want to),
works on the Ethereum mainnet, public testnet (Ropsten)..

.. and on any private instance (including testprc/truffle/ethercamp).

And even on browser-solidity!

Solidity version: 0.4 8+commit.60cc1668 Emscripten.clang
Change to:
8.4.9-nightly.2017.1.24+commit.b52a6048 -

| Text Wrap || Enable Optimization ¥/ Auto Compile
£ Compile

Attach Transact M Transact (Payable) Call
¥ DieselPrice S766 bytes

At Address Create

¥ DieselPrice at
0x692a70d2e424a56d2c6c27aa97d 1a86395877b3a (memory)
DieselPrice...
__callback
__callback
Events

newbDieselPrice [
"2.57
]

https://goo.gl/Etv2MT

@OraclizelT


https://goo.gl/Etv2MT
https://goo.gl/Etv2MT

The Ethereum Package Management
EIP190 package registry for Ethereum smart contract packages

https://www.ethpm.com

Oraclize is already available there as a package!

C Get started with Truffle <= Get started with Populus
$ npm install truffle $ pip install populus
% truffle install oraclize % populus package install oraclize

docs.oraclize.it @OraclizelT


https://www.ethpm.com
https://www.ethpm.com

Questions?

Join the #ethereum-api
channel on Gitter

Or come visit us at our HQ in London!

Code examples:
http://qithub.com/oraclize/ethereum-examples

docs.oraclize.it @OraclizelT


http://github.com/oraclize/ethereum-examples
http://github.com/oraclize/ethereum-examples

