
The “state of the art” oracle service.

Designing the safest data-transport-layer you can possibly get.

Thomas Bertani

@OraclizeITdocs.oraclize.it

@OraclizeITdocs.oraclize.it

@OraclizeITdocs.oraclize.it

● asking datasources to run blockchain adapters
● asking datasources to signal blockchain support via dedicated schemas
● suggesting dapp developers to run their own oracle
● trusting the provider of the oracle service that he is doing a good job
● asking the oracle to provide quality (??) data

The way NOT to do it

● 180k+ txs sent to the
 public Ethereum network
 since Sept 2015 (1.5% of all txs ever)

● most widely used oracle service

● on-demand data =
 blockchain is not being spammed!

@OraclizeITdocs.oraclize.it

@OraclizeITdocs.oraclize.it

https://github.com/oraclize/proof-verification-tool

@OraclizeITdocs.oraclize.it

Authenticity proofs: (mostly) Trusted Computing Techniques to prove.. the authenticity of data!

In the last 2 years.. we have designed ad-hoc security techniques based on:
Qualcomm TEE, Samsung Knox, Google SafetyNet, AWS sandbox, Intel SGX (?), ..

In general, nothing can be said around the quality of data.

https://github.com/oraclize/proof-verification-tool
https://github.com/oraclize/proof-verification-tool

@OraclizeITdocs.oraclize.it

Please please please, let’s stop proposing new standards to solve blockchain-specific

 problems only - most of them have a broader scope.

The datasources can provide verifiable, native, simple proofs to guarantee the
authenticity of data, and eventually will.

Such standard proposal is:

● being discussed since 2013

● elegant, simple and secure solution for native authenticity verification

● supported by different datasources already

● “blockchain” ofc is not being mentioned not even once

@OraclizeITdocs.oraclize.it

https://tools.ietf.org/html/draft-cavage-http-signatures-06

https://tools.ietf.org/html/draft-cavage-http-signatures-06
https://tools.ietf.org/html/draft-cavage-http-signatures-06

@OraclizeITdocs.oraclize.it

Thanks to the way Oraclize is designed, setting the
proofType to proofType_native is enough

What did we just do here?

● native authenticity of data guarantee (the strongest you can possibly get)
● still, no blockchain adapter was needed on the datasource side
● Oraclize works with *any* datasource, providing the strongest proof available

(as for user request)

fetching authentic data from **any** web API (temperature in London, flights info, random number, ..)

triggering events via web API calls (send email, open a lock, ..)

scheduling transactions for a future time (call that smart contract method in 1 hour)

delegating some code to an offchain auditable context (execute complex ops and give me back the result)

getting access to tons of datasources (IPFS/SWARM, Amazon Mechanical Turk, ..)

In a nutshell..

@OraclizeITdocs.oraclize.it

https://goo.gl/Etv2MT

No need to install anything (unless you want to),
works on the Ethereum mainnet, public testnet (Ropsten)..

.. and on any private instance (including testprc/truffle/ethercamp).

And even on browser-solidity!

@OraclizeITdocs.oraclize.it

https://goo.gl/Etv2MT
https://goo.gl/Etv2MT

The Ethereum Package Management
EIP190 package registry for Ethereum smart contract packages

https://www.ethpm.com

Oraclize is already available there as a package!

@OraclizeITdocs.oraclize.it

https://www.ethpm.com
https://www.ethpm.com

Questions?

Join the #ethereum-api
channel on Gitter

Or come visit us at our HQ in London!

Code examples:
http://github.com/oraclize/ethereum-examples

@OraclizeITdocs.oraclize.it

http://github.com/oraclize/ethereum-examples
http://github.com/oraclize/ethereum-examples

